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Abstract

This paper investigates periodic group crack problems in an infinite plate. The periodic group crack is composed of
infinite groups with numbering from j = �1, . . .,�2,�1,0,1,2, . . ., to j =1, and the groups are placed periodically.
The same loading condition and the same geometry are assumed for cracks in all groups. A singular integral equation
is used to solve the problems. The singular integral equation is formulated on cracks of the 0th group (or the central
group) with the collection of influences from the infinite groups. The influences of many neighboring groups to the cen-
tral group are evaluated exactly. Meantime, the influences of many remote groups to the central group can be summed
up into one term approximately. The stress intensity factors at crack tips can be evaluated from the solution of the sin-
gular integral equation. It is found from some sample problems that the obtained results are very accurate. Finally,
several numerical examples are presented and interaction among the group cracks is addressed.
� 2004 Elsevier Ltd. All rights reserved.

Keywords: Periodic group crack; Interaction of cracks; Numerical solution of singular integral equation
1. Introduction

Many researchers studied the multiple crack problems in an infinite plate (Savruk, 1981; Gross, 1982;
Parton and Perlin, 1984; Chen, 1984a,b; Kachanov, 1993). Recently, the previously obtained results were
collected in a publication (Chen et al., 2003). In the book, two kinds of the singular integral equations, two
kinds of Fredholm integral equation and one kind of hypersingular integral equation were developed to
solve the multiple crack problems. Solutions of some sample problems showed that the same results had
been obtained by using different kinds of integral equation. That is to say, the multiple crack problems
in an infinite plate have been solved very well at present.
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The periodic crack problem is a particular case of the multiple crack problem. Only some simple cases of
the problem have been solved previously (Savruk, 1981). For example, the infinite collinear crack problem
was solved in an earlier time (Westergaard, 1939). The problem of infinite rows of parallel cracks was solved
by using the integral transform method (Sneddon, 1973). For an infinite plate weakened by periodic cracks,
the relevant boundary problem was solved by using the eigenfunction expansion variational method (Chen
and Lee, 2002). Recently, elastic analysis for a row of collinear holes in an infinite plate was solved by using
the hypersingular integral equation (Wang et al., 2003). In the solution, the influence of holes at the remote
place to the central hole was neglected.
For the simple periodic crack problem, a singular integral equation is generally formulated on the central

crack. In the problem, the influences caused by many neighboring cracks can be summed up in one term. In
this case, the kernel in the integral equation takes a simple form and the relevant numerical solution can be
obtained without any difficulty (Savruk, 1981; Chen et al., 2003).
This paper investigates periodic group crack problems in an infinite plate. The periodic group crack is

composed of infinite groups with numbering from j = �1, . . .,�2,�1,0,1,2,. . ., to j =1, and the groups
are placed periodically. The same loading condition and the same geometry are assumed for cracks in all
groups. Not like the periodic crack problem, in the periodic group crack problems one cannot sum up all
influences of the remote groups to the central group into an explicit expression. This is a difficult point
encountered. The mentioned difficult point was overcome in the following way. A singular integral equation
is used to solve the problem. The singular integral equation is formulated on cracks of the 0th group (or the
central group) with the collection of influences from the infinite groups. Here, the influences represent the
kernel in the integral equation. The influences of many neighboring groups (j = �(N � 1),
�(N � 2), . . ., �2,�1,1,2, . . . , (N � 2), (N � 1)) to the central group are evaluated exactly. From the struc-
ture of the kernel we found that the influence caused by the �Nth group and the Nth group to the central
group is directly proportional to the factor 1/N2. With this property the influences of many remote groups
(j = �1, . . ., �(N + 2), �(N + 1),�N,N, (N + 1), (N + 2), . . .,1) to the central group can be summed up in
one term approximately with sufficient accuracy.
The stress intensity factors at crack tips in the problems can be evaluated from the solution of the sin-

gular integral equation. It is found from some sample problems that the obtained results are very accurate.
In two examples, the relative error for the value of stress intensity factors (abbreviated as SIFs) at crack tips
is less than 0.01%. Finally, several numerical examples are presented and interaction among group cracks
is addressed.
2. Singular integral equation for multiple crack problems

The fundamentals of the complex variable function method, which plays an important role in plane elas-
ticity, are briefly introduced in what follows. In the method, the stresses (rx,ry,rxy), the resultant forces
(X,Y) and the displacements (u,v) are expressed in terms of the complex potentials /(z) and w(z) such that
(Muskhelishvili, 1953)
rx þ ry ¼ 4ReUðzÞ

ry � irxy ¼ 2ReUðzÞ þ zU0ðzÞ þ WðzÞ ð1Þ

f ¼ �Y þ iX ¼ /ðzÞ þ z/0ðzÞ þ wðzÞ ð2Þ

2Gðuþ ivÞ ¼ j/ðzÞ � z/0ðzÞ � wðzÞ ð3Þ
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where U(z) = / 0(z), W(z) = w 0(z), a bar over a function denotes the conjugated value for the function, G is
the shear modulus of elasticity, j = (3 � m)/(1 + m) in the plane stress problem, j = 3 � 4m in the plane
strain problem, and m is the Poisson�s ratio.
The loading condition for the multiple crack problem is shown in Fig. 1(a). The stresses applied on the

cracks are assumed in the form
Fig. 1.
disloca
ðry � irxyÞk ¼ pkðskÞ � iqkðskÞ; ðj sk j< ak; k ¼ 1; 2; . . . ;NÞ ð4Þ

where pk(sk) and qk(sk) are the normal and shear stresses which are expressed in the local coordinates
xkokyk.
One way to model the multiple crack problem is as follows. The multiple crack problem shown in Fig.

1(a) can be considered as a superposition of N single crack problems, with undetermined distributed dislo-
cations g0kðskÞðj Sk j< ak; k ¼ 1; 2; . . . ;NÞ on the cracks (Fig. 1(b)). After some manipulations, a system
of the singular integral equations can be formulated as follows (Savruk, 1981; Chen et al., 2003):
1

p

Z ak

�ak

g0kðtÞdt
t � sk

þ 1
p

X0
N

j¼1

Z aj

�aj
½g0jðsjÞKjkðsj; skÞ þ g0jðsjÞLjkðsj; skÞ
dsj ¼ pkðskÞ � iqkðskÞ

ðj sk j< ak; k ¼ 1; 2; . . . ;NÞ ð5Þ
where the symbol
P0 means that the term corresponding to j = k has been excluded in the summation. The

kernels in Eq. (5) may be written as
Kjkðsj; skÞ ¼
1

2
expðiajÞ
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� �
;

Ljkðsj; skÞ ¼
1

2
expð�iajÞ

1

T j � T k
� expð�2iakÞ

T j � T k
ðT j � T kÞ2

" #
ð6Þ
∑
=

=
N

1j

Distributed
dislocation

)s(g jj′

o

y

xxo

y

ka2

ks

kx

kB
koz

ky

kα

kA

)s(iq)s(p kkkk −

ko

jA

jB
joz

jo

js

jy

jx
jα

)s(iq)s(p jjjj −

ja2

(a) (b)

Superposition method for the multiple crack problem: (a) the original problem and (b) superposition by the distributed
tions.
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where
T k ¼ zko þ sk expðiakÞ; ðk ¼ 1; 2; . . . ;NÞ ð7Þ

Also, the meaning of ak, zko, sk and ak (k = 1,2, . . . ,N) has been indicated in Fig. 1(a). Physically, for exam-
ple, the kernel Kjk(sj, sk) and Ljk(sj, sk) represents the influences of the jth crack to the kth crack.
In Eq. (5) the dislocation distribution functions are defined by
g0jðsjÞ ¼ � 2Gi
j þ 1

d½ðujðsjÞ þ ivjðsjÞÞþ � ðujðsjÞ þ ivjðsjÞÞ�

dsj

ðj sj j< aj; j ¼ 1; 2; . . . ;NÞ ð8Þ
where [(uj(sj) + ivj(sj))
+ � (uj(sj) + ivj(sj))�] stands for the jump value of the displacements along the jth

crack, and (uj(sj) + ivj(sj))
+, ((uj(sj) + ivj(sj))

�) denotes the displacements at a point ‘‘sj’’ of the upper (lower)
face of the jth crack.
Meantime, the single-valuedness condition of the displacements gives the following constraint equation:
Z ak

�ak
g0kðtÞdt ¼ 0 ðk ¼ 1; 2; . . . ;NÞ ð9Þ
It is seen that the mentioned function g0kðtÞ has a particular character at the vicinity of the crack tips, and
it can be expressed in the form:
g0kðtÞ ¼ GkðtÞða2k � t2Þ
�1=2 ðj t j< ak; k ¼ 1; 2; . . . ;NÞ ð10Þ
After the singular integral equation is solved, the SIFs at crack tip may be defined by
ðK1 � iK2ÞA;k ¼ ð2pÞ1=2 Lim
t!�ak

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j t þ ak j

p
g0kðtÞ ¼ ðp=akÞ1=2Gkð�akÞ

ðK1 � iK2ÞB;k ¼ �ð2pÞ1=2 Lim
t!ak

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j t � ak j

p
g0kðtÞ ¼ �ðp=akÞ1=2GkðakÞ ðk ¼ 1; 2; . . . ;NÞ ð11Þ
where the subscript A (or B) is for left (or right) crack tip, respectively, and the subscript ‘‘k’’ means that the
equation is used for the kth crack.
For solving the integral equation (5) and Eq. (9) numerically, the following integration rules are useful

(Savruk, 1981; Chen et al., 2003):
Z a

�a

GðtÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � t2

p
ðt � smÞ

¼ p
M

XM
j¼1

GðtjÞ
tj � sm

ðm ¼ 1; 2; . . . ;M � 1;M � integerÞ ð12Þ

Z a

�a

GðtÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � t2

p ¼ p
M

XM
j¼1
GðtjÞ ð13Þ
where
tj ¼ a cos
ð2j� 1Þp
2M

ðj ¼ 1; 2; . . . ;MÞ ð14Þ

sm ¼ a cos
mp
M

ðm ¼ 1; 2; . . . ;M � 1Þ ð15Þ
In Eqs. (12) and (13),M represents the number of the abscissas in integration. Physically, all integrated
functions (Gk(t), k = 1,2, . . ., N) in the present study are smooth functions. Based on this property, accurate
results can be obtained by usingMP 15 in Eqs. (12) and (13). This is followed from a computational expe-
rience (Chen et al., 2003).
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If the G(tj) (j = 1,2, . . .,M) values are known beforehand, the G(�a) and G(a) values can be evaluated by
the following extrapolation formulae:
Gð�aÞ ¼ 1

M

XM
j¼1

ð�1ÞjþMGðtjÞ tanðð2j� 1Þp=4MÞ

GðaÞ ¼ 1

M

XM
j¼1

ð�1Þjþ1GðtjÞ cotðð2j� 1Þp=4MÞ ð16Þ
After substituting Eq. (10) into Eqs. (5) and (9), and using the mentioned integration rules, a system of
algebraic equations for the values of the function Gk(t) at the discrete points is obtainable. If one choose the
same M value for each equation in Eqs. (5) and (9), the unknowns are Gk(tj) (j = 1,2, . . .,M,
k = 1,2, . . ., N), and the number of unknowns is M · N. In addition, the number of equations is also
M · N, where (M � 1) · N sets are from Eq. (5) and N sets are from Eq. (9). After the algebraic equations
are solved, we can obtain the SIFs by using Eqs. (11) and (16).
3. Solution of the periodic group crack problems

The periodic group crack is composed of infinite groups of cracks from j = �1, . . ., �2,�1,0,
1,2, . . ., j =1, and the groups are placed periodically (Fig. 2(a)). It is assumed that, each group is
j -th group
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Fig. 2. Periodic group crack problem: (a) periodic group crack and (b) two cracks in a central group.
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composed of the same cracks with the same boundary tractions on the crack faces. Without losing gener-
ality, in the present study each group is composed of two crack, the crack-1 and the crack-2 (Fig. 2(a)).
The first step is to consider the multiple crack problem for the central group (Fig. 2(b)). Eqs. (5) and (9)

are used to obtain the solution for the distribution dislocation function. In the solution, the number of the
abscissas (tj in Eqs. (12) and (14)) is ‘‘M’’, and the number of the collocation points (sm in Eqs. (12) and (15)
is ‘‘M � 1’’. In this case, after discretization Eq. (5) may be written in the following form:
A0 B0

D0 C0

� �
G1

G2

� �
¼

T1

T2

� �
ð17Þ
where A0 denotes an influence matrix for the crack-1 to itself, B0 denotes an influence matrix for the crack-2
to the crack-1, C0 denotes an influence matrix for the crack-2 to itself, and D0 denotes an influence matrix
for the crack-1 to the crack-2. In the present case, all the matrices A0, B0, C0, D0 have a dimension
(2M � 2) · (2M). Meantime, G1 and G2 denote a unknown vector with dimension 2M, which is obtained
after discretization for the functions G1(t) and G2(t) shown in Eq. (10). Meantime, T1 and T2 denote the
traction vector with dimension (2M � 2), which is obtained after discretization for the functions presented
the right hand term of Eq. (5). Note that, the singular integral equation (5) is expressed in a form of com-
plex variable, and computation should be performed in the real value. With this in mind, saying, the matrix
A0 should have a dimension (2M � 2) · (2M), rather than (M � 1) · (M).
Furthermore, the algebraic equation (17) in conjunction with a discretization of Eq. (9) will give the final

solution for the dislocation distribution functions. Later, the SIFs at crack tips can be evaluated by using
Eqs. (10) and (11). The detail of computation can be found from (Chen et al., 2003).
The periodic group crack problem will be studied below. Physically, if one collects all the influences from

the groups j = �1, . . ., �2,�1,0,1,2, . . ., j =1 to the central group, an algebraic equation on the cracks
for the central group can be formulated. The mentioned equation has the following form:
A0 B0

D0 C0

� �
þ
XN�1
j¼1

A�j B�j

D�j C�j

� �
þ

Aj Bj

Dj Cj

� �� �
þ
X1
j¼N

A�j B�j

D�j C�j

� �
þ

Aj Bj

Dj Cj

� �� �" #
G1

G2

� �
¼

T1

T2

� �

ð18Þ

The matrices, for example Aj, Bj, Cj and Dj (j = �1, . . ., �2,�1,0,1,2, . . ., j =1) represent the influence of
the jth group to the central group, and they can be evaluated from the kernels in Eq. (5). In more detail, for
example, matrix Bj denotes an influence matrix for the crack-2 of jth group to the crack-1 of the central
group, which is similar to the matrix B0 mentioned above.
It is a key point in the analysis to obtain the summation

P1
j¼N in Eq. (18) approximately. It is seen from

Eq. (5) that the influence at a point ‘‘to’’ of the crack-1 of central group caused by a concentrated source at a
point ‘‘t’’ of the crack-2 of the central group is proportional to 1/(t � to). With this estimation, the influence
at a point ‘‘to’’ of the crack-1 of central group caused by a concentrated source at a point ‘‘t’’ of the crack-2
of the -jth and the jth groups must be proportional to (Fig. 2(a))
1

t þ jzd � to
þ 1

t � jzd � to
¼ 2ðt � toÞ

ðt � toÞ2 � ðjzdÞ
2

 � 2ðt � toÞ

z2d

1

j2
ðfor large jÞ ð19Þ
where
zd ¼ xd þ iyd
and (xd,yd) are the periodic distances between two neighboring groups (Fig. 2(a)).
It is expected that each element in the matrix A�j + Aj,B�j + Bj,C�j + Cj and D�j + Dj (for large j) has

the same property as shown by Eq. (19). From this property, the following approximation is obtained:
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1

j2
A�j B�j

D�j C�j

� �
þ

Aj Bj

Dj Cj

� �� �

 1

ðjþ 1Þ2
A�ðjþ1Þ B�ðjþ1Þ

D�ðjþ1Þ C�ðjþ1Þ

� �
þ

Aðjþ1Þ Bðjþ1Þ

Dðjþ1Þ Cðjþ1Þ

� �� �
ðfor large jÞ

ð20Þ
From Eq. (20), one may obtain the following approximation:
X1
j¼N

A�j B�j

D�j C�j

" #
þ

Aj Bj

Dj Cj

" #" #

 d

A�N B�N

D�N C�N

" #
þ

AN BN

DN CN

" #" #
ðfor large NÞ ð21Þ
where
d ¼
X1
j¼N

1

j2

 !
1

N 2

� 

¼ N 2

p2

6
�
XN�1
j¼1

1

j2

 !,
ð22Þ
We may summarize the process of the solution as follows:

(a) We evaluate the final solution for the dislocation distribution functions from the algebraic equation
(18) in conjunction with a discretization of Eq. (9).

(b) The matrices in Eq. (18), A0, B0, C0 and D0, Aj, Bj, Cj and Dj (j = �N, . . ., �2,�1,1,2, . . ., N) are
evaluated exactly.

(c) The third term in the left-hand side of Eq. (18) is evaluated approximately by using Eq. (21).
(d) The SIFs at the crack tips can be evaluated from the obtained solution for the dislocation distribution

functions.
4. Numerical examples

Some numerical examples are given to illustrate the results of the method presented. The first two exam-
ples are devoted to examine the accuracy of the presented method.

4.1. Example 1

In the first example, a problem for the infinite collinear cracks with the same length is considered (Fig.
3(a)). The loading in the problem is the remote tension r1

y ¼ p. In computation,M = 25 is assumed for the
number of the abscissas in Eq. (12). The infinite collinear cracks are assumed in a form of infinite groups
marked with a dashed line (Fig. 3(a)). Two conditions of computation are assumed.

(a) One considers the influence of the remainders in Eq. (18) (the third term in Eq. (18) with the suffixP1
j¼N ). Meantime, the term is approximated by using Eq. (21).

(b) One does not consider the influence of the remainders in Eq. (18) (the third term in Eq. (18) with the
suffix

P1
j¼N ). This means that this term is neglected in computation.

In both cases, N = 10,20, . . ., 100 are assumed. The calculated results for the SIFs at the crack tips are
expressed as
K1 ¼ F 1ðN ; 2a=dÞp
ffiffiffiffiffiffi
pa

p
ð23Þ
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Fig. 3. Five cases of the periodic group crack: (a) infinite collinear cracks; (b) infinite cracks in a stacked position; (c) infinite groups in
an inclined position; (d) infinite groups composed of two cracks with unequal length and (e) infinite groups in a stacked position.
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The calculated results are plotted in Table 1. In the following estimation, the relative error for the stress
intensity factors is denoted by D. The 2a/d = 0.9 case is taken for examination. For N = 10, 20, . . . , 100,
we find jDj < 0.01% under the condition of considering the remainders in Eq. (18).



Table 1
Nondimensional SIFs F1(N, 2a/d) at crack tips for infinite collinear cracks (see Fig. 3(a) and Eq. (23))

2a/d 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Considering the remainders in Eq. (18), M = 25, N = 10,20, . . ., 100

N

10 1.00414 1.01698 1.03983 1.07533 1.12839 1.20848 1.33603 1.56503 2.11342
20 1.00414 1.01698 1.03983 1.07533 1.12838 1.20847 1.33601 1.56498 2.11332
30 1.00414 1.01698 1.03983 1.07533 1.12838 1.20847 1.33601 1.56498 2.11331
40 1.00414 1.01698 1.03983 1.07533 1.12838 1.20846 1.33601 1.56497 2.11331
50 1.00414 1.01698 1.03983 1.07533 1.12838 1.20846 1.33601 1.56497 2.11331
60 1.00414 1.01698 1.03983 1.07533 1.12838 1.20846 1.33601 1.56497 2.11331
70 1.00414 1.01698 1.03983 1.07533 1.12838 1.20846 1.33601 1.56497 2.11331
80 1.00414 1.01698 1.03983 1.07533 1.12838 1.20846 1.33601 1.56497 2.11331
90 1.00414 1.01698 1.03983 1.07533 1.12838 1.20846 1.33601 1.56497 2.11331
100 1.00414 1.01698 1.03983 1.07533 1.12838 1.20846 1.33601 1.56497 2.11331
* 1.00415 1.01698 1.03983 1.07533 1.12838 1.20847 1.33601 1.56497 2.11331

Considering the remainders in Eq. (18), N = 50, M = 9,11, . . . ,25

M

9 1.00414 1.01698 1.03983 1.07533 1.12838 1.20846 1.33599 1.56478 2.10909
11 1.00414 1.01698 1.03983 1.07533 1.12838 1.20846 1.33600 1.56495 2.11227
13 1.00414 1.01698 1.03983 1.07533 1.12838 1.20846 1.33601 1.56497 2.11305
15 1.00414 1.01698 1.03983 1.07533 1.12838 1.20846 1.33601 1.56497 2.11324
17 1.00414 1.01698 1.03983 1.07533 1.12838 1.20846 1.33601 1.56497 2.11329
19 1.00414 1.01698 1.03983 1.07533 1.12838 1.20846 1.33601 1.56497 2.11331
21 1.00414 1.01698 1.03983 1.07533 1.12838 1.20846 1.33601 1.56497 2.11331
23 1.00414 1.01698 1.03983 1.07533 1.12838 1.20846 1.33601 1.56497 2.11331
25 1.00414 1.01698 1.03983 1.07533 1.12838 1.20846 1.33601 1.56497 2.11331
* 1.00415 1.01698 1.03983 1.07533 1.12838 1.20847 1.33601 1.56497 2.11331

Not considering the remainders in Eq. (18), M = 25, N = 10,20, . . . ,100
N

10 1.00402 1.01649 1.03867 1.07313 1.12462 1.20229 1.32589 1.54742 2.07611
20 1.00408 1.01673 1.03924 1.07420 1.12645 1.20530 1.33081 1.55594 2.09410
30 1.00410 1.01681 1.03943 1.07457 1.12708 1.20633 1.33251 1.55889 2.10036
40 1.00411 1.01685 1.03953 1.07476 1.12740 1.20686 1.33337 1.56039 2.10354
50 1.00412 1.01688 1.03959 1.07487 1.12760 1.20718 1.33389 1.56129 2.10547
60 1.00412 1.01690 1.03963 1.07495 1.12772 1.20739 1.33424 1.56190 2.10676
70 1.00413 1.01691 1.03966 1.07500 1.12782 1.20754 1.33449 1.56234 2.10769
80 1.00413 1.01692 1.03968 1.07504 1.12789 1.20766 1.33468 1.56266 2.10838
90 1.00413 1.01692 1.03970 1.07507 1.12794 1.20775 1.33482 1.56292 2.10893
100 1.00413 1.01693 1.03971 1.07510 1.12799 1.20782 1.33494 1.56312 2.10936

* From an exact solution (Murakami, 1987).

Y.Z. Chen, X.Y. Lin / International Journal of Solids and Structures 42 (2005) 2837–2850 2845
In computation we choose M = 25. This is from an experience for doing similar computation (Chen
et al., 2003). For the examination of the convergence for the usedM, the problem is solved under conditions
M = 9,11, . . . ,25 and N = 50. The calculated results are also listed in Table 1. From Table 1 we see that
even we take M = 15, accurate results are obtained.
Meantime, in the condition of not considering the remainders in Eq. (18), we find D = �0.91% (for

N = 20) D = �0.37% (for N = 50), D = �0.19% (for N = 100), respectively. Comparison results prove that
the suggested technique provides an effective way for the numerical solution of the periodic group crack
problems.
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4.2. Example 2

In the second example, a problem for infinite cracks with the same length is in a stacked position (Fig.
3(b)). The loading in the problem is the remote tension r1

y ¼ p. In computation,M = 25 is assumed for the
number of the abscissas in Eq. (12). The infinite cracks are assumed in a form of infinite groups marked
with a dashed line (Fig. 3(b)). As before, two conditions of computation mentioned in the Example 1
are also assumed.
In both cases, N = 10,20, . . . ,100 are assumed. The calculated results for the SIFs at the crack tips are

expressed as
Table
Nondi

d/a

Consid

N

10
20
30
40
50
60
70
80
90
100
*

Not co

N

10
20
30
40
50
60
70
80
90
100

* From
K1 ¼ G1ðN ; d=aÞp
ffiffiffiffiffiffi
pa

p
ð24Þ
The calculated results are plotted in Table 2. Similarly, the d/a = 0.3 case is taken for examination. For the
condition of considering the remainders in Eq. (18), we find D = 0.18% (for N = 20), D = 0.01% (for
N = 50) and D = 0.00% (for N = 100), respectively. In this case, the condition N = 50 can provide an accu-
rate result. However, for the condition of not considering the remainders in Eq. (18), we find D = 8.06% (for
N = 20) D = 3.16% (for N = 50), D = 1.57% (for N = 100), respectively. In this case, even N = 100 is taken,
one cannot get an accurate result.
2
mensional SIFs G1(N,d/a) at crack tips for infinite cracks in a stacked position (see Fig. 3(b) and Eq. (24))

0.3 0.4 0.5 0.6 1.0 2.0 5.0 10.0 20.0

ering the remainders in Eq. (18)

0.22107 0.25358 0.28280 0.30945 0.39902 0.57019 0.84787 0.95406 0.98789
0.21891 0.25250 0.28220 0.30908 0.39895 0.57019 0.84787 0.95406 0.98789
0.21864 0.25237 0.28213 0.30904 0.39894 0.57019 0.84788 0.95406 0.98789
0.21857 0.25234 0.28211 0.30903 0.39893 0.57019 0.84788 0.95406 0.98789
0.21854 0.25233 0.28210 0.30902 0.39893 0.57019 0.84788 0.95406 0.98789
0.21853 0.25232 0.28210 0.30902 0.39893 0.57019 0.84788 0.95406 0.98789
0.21852 0.25232 0.28210 0.30902 0.39893 0.57019 0.84788 0.95406 0.98789
0.21852 0.25232 0.28210 0.30902 0.39893 0.57019 0.84788 0.95406 0.98789
0.21851 0.25232 0.28210 0.30902 0.39893 0.57019 0.84788 0.95406 0.98789
0.21851 0.25231 0.28210 0.30902 0.39893 0.57019 0.84788 0.95406 0.98789
0.21851 0.25231 0.28210 0.30902 0.39893 0.57019 0.84788

nsidering the remainders in Eq. (18)

0.25433 0.28247 0.30845 0.33261 0.41612 0.58099 0.85198 0.95536 0.98824
0.23612 0.26721 0.29518 0.32077 0.40758 0.57567 0.84997 0.95472 0.98807
0.23013 0.26218 0.29078 0.31684 0.40470 0.57387 0.84929 0.95451 0.98801
0.22717 0.25968 0.28859 0.31487 0.40326 0.57295 0.84894 0.95439 0.98798
0.22541 0.25819 0.28728 0.31370 0.40240 0.57241 0.84873 0.95433 0.98796
0.22424 0.25720 0.28641 0.31292 0.40182 0.57204 0.84859 0.95428 0.98795
0.22341 0.25650 0.28579 0.31236 0.40141 0.57178 0.84848 0.95425 0.98794
0.22279 0.25597 0.28533 0.31194 0.40110 0.57158 0.84841 0.95423 0.98793
0.22231 0.25556 0.28497 0.31161 0.40086 0.57143 0.84835 0.95421 0.98793
0.22193 0.25524 0.28468 0.31135 0.40067 0.57130 0.84830 0.95419 0.98792

an exact solution (Murakami, 1987).
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4.3. Example 3

In the third example, two cracks with equal length are placed in a group and remote tension r1
y ¼ p is

assumed (Fig. 3(c)). The distances between two groups are xd ¼ R cos h, yd ¼ R sin h (see Figs. 2(a), 3(c)),
and R = 2.5a. M = 25 is assumed for the number of the abscissas in Eq. (12), and N = 50 is used in
Eqs. (18) and (21). The calculated results for the SIFs at the crack tips are expressed as
K1A ¼ K1D ¼ F 1AðhÞp
ffiffiffiffiffiffi
pa

p

K1B ¼ K1C ¼ F 1BðhÞp
ffiffiffiffiffiffi
pa

p

K2A ¼ �K2D ¼ F 2AðhÞp
ffiffiffiffiffiffi
pa

p

K2B ¼ �K2C ¼ F 2BðhÞp
ffiffiffiffiffiffi
pa

p
ð25Þ
For h = 0�, 10�, . . . , 90� par, the calculated results are plotted in Fig. 4. Since all values of SIFs for I-mode
are positive, validity of the calculated results is proved.
In the case of h = 0�, infinite groups are placed in a horizontal position. In this case, the I-mode SIFs at

the crack tips possess generally a larger value. For example, F1A(h)jh=0� = 1.4959. The largest value of
F1A(h) reaches at an intermediate position of h, and the value is F1A(h)jh=30� = 2.1028. Meantime, in the
case of h = 90�, infinite groups are placed in a stacked position. In the latter case, the I-mode SIFs at
the crack tips possess generally a smaller value, for example, F1A(h)jh=90� = 0.4463.

4.4. Example 4

In the fourth example, two cracks with unequal length, one is ‘‘2a’’ and the other is ‘‘2b’’, are placed in a
group, and remote tension r1

y ¼ p is assumed (Fig. 3(d)). The distances between two groups are xd = f,
yd = f (see Fig. 2(a), Fig. 3(d)). M1 = 17 and M2 = 25 are assumed for the number of the abscissas in
Eq. (12), for two cracks, respectively. N = 50 is used in Eqs. (18) and (21). The calculated results for the
SIFs at the crack tips are expressed as
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Fig. 4. Nondimensional SIFs F1A(h), F1B(h), F2A(h) and F2B(h) (see Fig. 3(c) and Eq. (25)).
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Fig. 6.
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K1A ¼ F 2Aðf =aÞp
ffiffiffiffiffiffi
pa

p
; K1B ¼ F 1Bðf =aÞp

ffiffiffiffiffiffi
pa

p

K2A ¼ F 2Aðf =aÞp
ffiffiffiffiffiffi
pa

p
; K2B ¼ F 2Bðf =aÞp

ffiffiffiffiffiffi
pa

p

K1C ¼ F 1Cðf =aÞp
ffiffiffiffiffiffi
pa

p
; K1D ¼ F 1Dðf =aÞp

ffiffiffiffiffiffi
pa

p

K2C ¼ F 2Cðf =aÞp
ffiffiffiffiffiffi
pa

p
; K2D ¼ F 2Dðf =aÞp

ffiffiffiffiffiffi
pa

p
ð26Þ
For f/a = 0.5,1.0, . . . , 5.0, the calculated results are plotted in Fig. 5. Since all values of SIFs for I-mode
are positive, validity of the calculated results is proved. Form Fig. 5 we see that, in the f/a = 0.5 case,
or a narrow spacing between groups, the II-mode SIF can reach a considerable value, saying,
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F2D(f/a)jf/a=0.5 = �2.1492. Because of a particular geometry in the problem, the normal loading can initiate
a rather larger II-mode SIF. On the contrary, in the f/a = 5.0 case, or a larger spacing between groups, the
II-mode SIF becomes a small value, saying, F2D(f/a)jf/a=5.0 = �0.2004.

4.5. Example 5

In the fifth example, two cracks with equal length are placed in a group (Fig. 3(e)). One crack is in hor-
izontal location and the other is in a slight rotation position. The distances between two groups are xd = 0,
yd = f (see Fig. 2(a), 3(e)).M = 25 are assumed for the number of the abscissas in Eq. (12), for two cracks,
respectively. N = 50 is used in Eqs. (18) and (21). The calculated results for the SIFs at the crack tips can
also be expressed by Eq. (26).
For f/a = 1.0,2.0, . . . , 10.0, the calculated results are plotted in Fig. 6. Since all values of SIFs for I-mode

are positive, validity of the calculated results is proved. Since groups are placed in a stacked position,
we can easily see the effect of the stack. In a case of the narrow spacing between groups, for example of
f/a = 1.0, we have F1B (f/a)jf/a=1.0 = 0.4058. However in a case of a larger spacing between groups, for
example of f/a = 10.0, we have F1B (f/a)jf/a=10.0 = 1.3154.
5. Conclusions

The singular integral equation provides an effective way to solve the multiple crack problem, since the
formulation in the problem is based on a rigorous derivation and the relevant integration rule possesses
high efficiency. For the periodic group crack problem, an essential step was taken in the present study.
The influences from the—jth group and the jth group (j = N,N + 1, . . . ,1,2, . . . ,1) to the central group
can be summed into one term approximately. This result was shown by Eq. (21). The mentioned approx-
imation can give a very accurate numerical result, which was shown in Examples 1 and 2. On the other
hand, if one does not use this method and truncates the successful influence kernels up to N = 50 terms,
the relative error takes D = 3.16% in the Example 2. Therefore, we can easily see a particular advantage
of the suggested method.
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